Higher Cospans and Weak Cubical Categories (cospans in Algebraic Topology, I)
نویسنده
چکیده
We define a notion of weak cubical category, abstracted from the structure of n-cubical cospans x : ∧ → X in a category X, where ∧ is the ‘formal cospan’ category. These diagrams form a cubical set with compositions x +i y in all directions, which are computed using pushouts and behave ‘categorically’ in a weak sense, up to suitable comparisons. Actually, we work with a ‘symmetric cubical structure’, which includes the transposition symmetries, because this allows for a strong simplification of the coherence conditions. These notions will be used in subsequent papers to study topological cospans and their use in Algebraic Topology, from tangles to cobordisms of manifolds. We also introduce the more general notion of a multiple category, where to start with arrows belong to different sorts, varying in a countable family, and symmetries must be dropped. The present examples seem to show that the symmetric cubical case is better suited for topological applications.
منابع مشابه
Higher Cospans and Weak Cubical Categories ( Cospans in Algebraic Topology , I ) Marco
We define a notion of weak cubical category, abstracted from the structure of n-cubical cospans x : ∧ → X in a category X, where ∧ is the ‘formal cospan’ category. These diagrams form a cubical set with compositions x +i y in all directions, which are computed using pushouts and behave ‘categorically’ in a weak sense, up to suitable comparisons. Actually, we work with a ‘symmetric cubical struc...
متن کاملCubical Cospans and Higher Cobordisms (cospans in Algebraic Topology, Iii)
After two papers on weak cubical categories and collarable cospans, respectively, we put things together and construct a weak cubical category of cubical collared cospans of topological spaces. We also build a second structure, called a quasi cubical category, formed of arbitrary cubical cospans concatenated by homotopy pushouts. This structure, simpler but weaker, has lax identities. It contai...
متن کاملCollared Cospans , Cohomotopy and Tqft ( Cospans in Algebraic Topology , Ii )
Topological cospans and their concatenation, by pushout, appear in the theories of tangles, ribbons, cobordisms, etc. Various algebraic invariants have been introduced for their study, which it would be interesting to link with the standard tools of Algebraic Topology, (co)homotopy and (co)homology functors. Here we introduce collarable (and collared) cospans between topological spaces. They ge...
متن کاملDouble Bicategories and Double Cospans
Interest in weak cubical n-categories arises in various contexts, in particular in topological field theories. In this paper, we describe a concept of double bicategory in terms of bicategories internal to Bicat. We show that in a special case one can reduce this to what we call a Verity double bicategory, after Domenic Verity. This is a weakened version of a double category, in the sense that ...
متن کاملSome algebraic laws for spans ( and their connections with multirelations ) 1 Roberto Bruni and Fabio Gadducci
This paper investigates some key algebraic properties of the categories of spans and cospans (up to isomorphic supports) over the category Set of (small) sets and functions, analyzing the monoidal structures induced over both spans and cospans by cartesian product and disjoint union of sets. Our results find analogous counterparts in (and are partly inspired by) the theory of relational algebra...
متن کامل